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We present a class of second-order conservative finite difference algorithms for solving 
numerically time-dependent problems for hyperboiic conservation iaws in several space 
variables. These methods are upwind and multidimensional, in that the numerical fluxes are 
obtained by solving the characteristic form of the full multidimensional equations at the zone 
edge, and that all fluxes are evaluated and differenced at the same time; in particular, operator 
splitting is not used. Correct behavior at discontinuities is obtained by the use of solutions TV 
the Riemann problem, and by limiting some of the second-order terms. Numerical results are 
presented, which show that the methods described here yield the same bigh resolution as the 
corresponding operator split methods. Q 1990 Academic Press, Inc. 

Over the last several years, there has been considerable development of upwin 
type numerical methods for solving nonlinear systems of byperbo~~c conservation. 
laws in several space dimensions. These methods, generally peaking, a.re all secon 
order extensions of Godunov’s first-order method [ 111. T ey incorporate into t 
numerical solutions the nonlinear wave propagation properties of the solution, in 
the form of Riemann problems and characteristic equations, leading to algorithms 
which are robust and accurate, even in the presence of nonlinear disco~~~~n~~t~~s. 
However, all of the methods currently in use are derived using the characteristic 
form of the equations in one space dimension, with most of these algorithms being 
extented to several space dimensions using operator splitting. Nonetheless, these 
algorithms, particularly the operator split ones, have been quite successful in res~~v~~~ 
complex patterns of interacting discontinuities and smooth waves ; for further 
details see [22-j and the references cited there. 

In this paper, we will consider a class of conservative finite difference akgorithms 
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for hyperbolic conservation laws in several space variables which do not make use 
of operator splitting, for which the multidimensional wave propagation properties 
of the solution are used to calculate fluxes. Unsplit schemes are customarily used 
in a variety of applications, including petroleum reservoir simulation [lg], 
ionospheric physics [24], and Lagrangian hydrodynamics [I]. Thus, one of our 
goals is to provide algorithms which have the same robustness and resolution as the 
existing operator split algorithms, but which have the same unsplit structure as the 
existing algorithms used in the applications codes in those areas. In addition, there 
are two specilic applications for which these methods were developed which are the 
subject of our current research. One is as a method to be coupled with a front 
tracking method [3], where the tracked front is represented locally by a polygonal 
line which divides the cells into two pieces. In each piece, the solution is updated 
by a method that is necessarily unsplit, in order to preserve the Rankine-Hugoniot 
relations for the tracked front. The second application is as a starting point for the 
extension to more than one space dimension of implicit/explicit methods of the type 
discussed in [lo]. In these methods, propagation along each of the characteristic 
families is treated implicitly or explicitly, depending on whether the CFL number 
for that characteristic is greater than or less than 1. Thus we require an explicit 
algorithm with properties similar to those of the l-dimensional algorithms in [7], 
but which can be hybridized continuously to an implicit algorithm, in order to have 
steady states which are independent of d t. 

The design of the algorithm described here is broken into two steps. First, we 
specify an algorithm for a linear scalar advection equation, which. in smooth 
regions, is second-order accurate, to which a monotonicity condition, related to 
those used in [ZO] for advection algorithms in one dimension, is applied. We then 
construct the algorithm for systems by introducing a predictor-corrector formalism 
and by replacing various derivatives in the predictor step by finite differences, using 
the advection algorithm as guide: upwind differences for advection become 
differences of Godunov fluxes for systems, and monotonized central differences for 
advection become monotonized central differences with monotonicity constraints 
applied to the appropriate choice of transformed variables. Independently of the 
present work, van Leer also derived multidimensional upwind methods for hyper- 
bolic conservation laws, following a similar line or reasoning; in particular, both 
methods lead to the algorithm for advection given in the next section. However, his 
extension to systems is rather different from the predictor-corrector formalism 
described here; for details, see [21]. 

A major problem in the program outlined above is the specification of design 
criteria which guarantee oscillation-free results, even in the one for a linear scalar 
equation. The principal criterion in one space dimension is that the scheme be total 
variation diminishing [ 131; however, a straightforward generalization of this 
criterion to more than one dimension has been shown in [12] to imply that the 
scheme is at most first-order accurate for smooth solutions. The approach taken in 
the present work is to specify cetain necessary conditions that the scheme must 
satisfy, and which are satisfied by the schemes described here. These are: 
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(1) For a I-dimensional problem aligned with one of the grid directions, the 
algorithm. should reduce to a second-order Godunov metho of a type described 
in [7]. 

(2) The second-order scheme without limiting, and the first-order sche~me 
obtained by imposing the full limiting of the fluxes at all mesh points, should have 
as linear difference schemes, the same CFL stability limit on the time step. This 
CFE stability limit should be the same as for an operator split scheme, with the 
component l-dimensional algorithm as in [7]. 

(3) In the case of linear advection, the fully limited scheme should satisfy a 
maximum principle. 

In the following, we will restrict our attention to the case of two space variables. 
Although the formalism developed here carries over to higher dimensions, rhe 
trade-offs between performance and cost change as the number of dimensions grow ; 
a proper evaluation of what those trade-offs are can ~niy be made by numerical 
experimentation. In three dimensions, such a study wouid strain the capaoiiities of 
present computer technology. Some discussion of these considerations wi)lI be nade 

e final section of this paper. 

1. ADVECTION ALGORITHMS 

We consider the scalar advection equation in two space variables 

We want to solve numerically initial value problems for (I.1 ). To this end: -we 
will attempt to construct algorithms which generalize ~pstre~m~centered aigorithms 
in [ZO] to two space variables, without replacing the operator ap~roxim~tjmg the 
time evolution of (1.1) by the product of l-dimensional evolution operators. Our 
strategy will be to start from a well-behaved first-order upwind algorithm ‘I _ IQ? 
solving (1.1). We add to the evolution operator the terms necessary to make the 
algorithm second-order accurate in a way such that they can be Iimited. Le., 
subtracted off, at discontinuities. 

Let ds, by be spatial increments, dt a time increment. We assume that we ‘know 
p:J? the average of p at time t”: 

I 

p:j=$, /, p(x, I”) dx. 
r.,* z., 

ere di.,=C(i-~)d.r,(i+~)ns]x~(.i-~)d~.(j+~)C~,3~ a,.i=larea of Ir2:,,;1. 
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We wish to calculate py f’, the solution to (1.1) at time trr+ ’ = t” + At. A natural 
algorithm for doing this ‘is to trace backward in time from t” + At the set ‘!fij, along 
the characteristics of (1.1) to obtain A&. Then pi, j ‘I+ ’ is set equal to the average 
over Ai,j of the trivial interpolation function p’(x) = pr j if x E A, j: 

=(A,p:j+A,P::i-,+~~P~~,,j+A,P~-l,j-l~~ (1.2) 
CJ 

where the A,‘s are the areas in each of the four upstream zones swept out by u, as 
indicated in Fig. 1. 

We can put this scheme in explicit conservation form 

(1.4) 

One way of deriving the formulas for p~~~~j, p;~~~s2 is to notice that they are the 
averages of P’ over the region swept out by the characteristics through the zone 
edges centered, respectively, at (i+ &j) and (i, j+ i) (Fig. 2). We shall refer to this 
scheme as the corner transport upwind (CTU) scheme, since it takes into account 
the effect of information propagating across corners of zones in calculating the flux. 
This scheme is first-order accurate. It also satisfies a maximum principle, since 
p$&, p;;:$ are weighted sums,. with nonnegative weights, of values of the 
solution at time r”. 

FIG. 1. The region over which we average p’ to obtain the new value for p is outlined with a dotted 
line. It is obtained by following the integral curves of the vector field u (in this case, straight lines) back- 
wards in time by Sr from points in d,. 
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Fur;. 2. Tne shaded region is the region over which one averages p’ to obtain the CTU flux at rhe 
zone edge bounding that region. It is the set of all points from .xkich characterisrics can reack thai zone 
edge between rime I” and r” + AZ, 

One fact that is immediately seen from the formula given above for the boxes 
is the difference between the CTU scheme and the conventional donor czi! 

differencing. In the latter case, p:.+?z.i = p:fj, p;T_1’$ = pr.,. Thus, in this scheme, k+e 
are adding a time-centered correction term to the donor-cell flux which estimates 
the effect on the flux of the gradients in the transverse direction. This corresponds 
to subtracting from the donor cell algorithm a term which, to Ieading order in the 
truncation error, is always destabilizing. This is reflected in the differing CFL rime 
step limits for the two schemes: 

where (1.5 j is a suffkient condition, and (1.6) is a necessary condition, as is eas:iy 
checked using Fourier analysis. 

One can view schemes of the form (1.3)-( 1.4) as being predictor-corrector 
schemes. One regards the calcuiation of p;‘z:!&: pT,=‘<‘, as the predictor step, with 
the conservative differencing as the corrector step. Thus, if ,o;,+?& were to be 
calculated in such a way as to have a local truncation error of O(Ar*) in smooth 

regions: then the scheme would be second-order accurate. To obtain such an 
estimate for p;zc:l:i one must have 
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The only terms in (1.7) missing for the CTU flux (1.4) are the ones involving Sp!&x. 
Thus, we add that term to p;$iTi to obtain a second-order flux: 

(1.8) 

Here 4”p, j/4~~ should be a difference approximation to (Sp/a.x)( ,id.r. jdgJ, and 4”~ 
should also be limited to suppress oscillations at discontinuities. The simplest choice 
is a central difference approximation to (?p/?~), with the l-dimensional limiter 
given in [?O]: 

X w@:'+ ~,j- PY- I, j) if (P:,'+ ,.,i-P;j)(P2j-Pr-,,,i)>O; 

= 0 otherwise. (1.9) 

Similarly, we define 

where 4.“p is a monotonized central difference formula, such as the one given by 
(1.9 j with the roles of i and j reversed. Because of the nonlinear switch in the defmi- 
tion of 4”p, 4?p, one cannot perform a formal error analysis on this algorithm. 
However, in smooth regions, one expects 3”p, dJ’p to be given by the central dif- 
ference operators (4”p)i,.j= f(pi+ l..i - pip 1, j), (4I.o ji,l = f(pi,,+ I - pi,]- L j. In this 
case, one can perform the linear error analysis and find that the scheme is second- 
order accurate. We have also calculated the amplification factor and evaluated it 
numerically; we have found that, as long as the time step satisfies (Lj), the second- 
order algorithm does not amplify any Fourier modes. 

There is not a great deal one can say about the monotonicity properties of this 
algorithm, save that, when the slopes are fully limited, i.e., 4 yp = 4”~ = 0, it reduces 
to the first-order CTU scheme described above. In order to have this property, it 
is necessary to treat the spatial derivatives in the predictor step in a non-symmetric 
way: the derivatives in the direction tangent to the zone edge are approximated by 
upwind differences, and are not subject to monotonicity constraints, while the 
derivatives in the direction normal to the zone edge are approximated by 
monotonized central differences. For linear advection of a discontinuity oblique to 
the grid, the algorithm appears to produce monotone results. 

A different approach to the one taken here, more in line with the geometric 
constructions in [20], would be to construct piecewise linear interpolants of p, 
suitably monotonized, and to integrate over surfaces swept out by the characteritics 
to obtain fluxes, similar to what was done to obtain the flux form (1.4) for the CTU 
scheme. We have not done so here: for a development along such lines, see [21]. 
However, for strongly nonlinear problems, we find that a somewhat more elaborate 



treatment of the transverse derivatives than simply using first-order upind 
diffeerencing will be required, leading to an algorithm which is intermediate in 
complexity. This algorithm will be discussed in the next section. 

2. SYSTEMS OF CONSERVATION LAWS 

In this section, we will consider algorithms for solving numerically the initiai 
value problem 

For each nr E ’ we define the projected equations (along ra) to be the i-dimensionxi 
system of conservation laws 

( -i -j 

/A.- ,i 

We say that the system (2.1) is hyperbolic if, for every n she projected equarjcr~s 

4 

FiG. 3. Chacacrerisric surfaces in two space dimensions. f is a curve in the spatial plane with ~Iii~~WLi 

vector 5eId n. and S’ is one of the .M characteristic surfaces in space-time passing throw@ ,7 
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(2.2) are hyperbolic, i.e., that the linearized coefficient matrix V,F” = A” has M real 
eigenvalues A”, I d . . d /Z’*..” corresponding to M linearly independent left and right 
eigenvectors (l”.‘, I”.“), V= 1, ,.., AL We also have A”= n. A, where A= (A’, A’), 
-4” = V,.F”, A.” =VLFJ’. The left and right eigenvectors can be chosen so as to be 
biorthonormal, i.e.. I”*” . I.“.” = 6 ,,,,, ,, so that the expansion of a vector II’ER”’ in 
terms of the P”s is given by N’= x,,= i, ,,_, M E”,\‘P”, with ~(“3” = I”,” 1~. 

Our algorithm for the calculation of conservative fluxes is motivated in part by 
a version of the multidimensional theory of characteristics, which we review briefly 
here; for a more extensive discussion, see [S, 161. If I- is a curve in the plane 
{(x, t): t=t,}, th en there exist surfaces S’, . . . . S” called characteristic surfaces, 
passing through r, such that the normal to S” at a point (x, t) is of the form 
(n, -A”.“), where A”,” is the rth eigenvalue of the projected equations in the 
direction of the unit vector n (see Fig. 3). The significance of these surfaces is that 
along each of these surfaces, a continuous, piecewise C’ solution to (2.1) satisfies 
the following interior partial differential relation: 

()=I”.‘. au 
I+ATU 

> 

= 1%‘. 2U 
at+ (n. A)(n .VU) + (t .A)(t .VU) 

> 

= I”.” , au 
z+,i”-‘n.VU+(t.A)(t.VU) , 

> 
(2.3) 

where t is a unit vector orthogonal to n in the plane. Since (dn9’n, 1) and (t, 0) are 
tangent to S’, then (2.3) contains only derivatives in directions tangent to S’. In 
particular, if we define d/do’ to be differentiation in the direction of the vector field 
(A”,%, I), then (2.3 ) becomes 

,..~e.E+(p’ .A’)(t.VU)=O; (2.4) 

i.e., we obtain the ordinary differential relation from the theory of characteristics in 
one dimension for the system projected in the n direction, with the derivatives in the 
t direction acting as source terms. 

Finally, we assume that the Riemann problem for the projected system (2.2) is 
well posed for all n E R2, i.e., that the initial value problem for (2.2) given by 

ux, 0) = u, for x<O 

= UR for x>O 

has a unique solution with appropriate entropy conditions, for any choice of UL, 
UR for which (2.2) is hyperbolic. This solution is a function only of the similarity 
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variable l/r; throughout this paper, when we require the solution to a Riemann 
problem, it will be at the point x/t = 0. 

We assume, as in the scalar case, that we know e/r:fI’ the average of the sohrtion 
over A,.,, the zone centered at (i Ax, j Ay) : 

We want to extend the algorithm described in the previous section to calcufete 
U:.:, ‘, The difficulty here is that the different modes of wave propagation can carry 
gradient information from different sides of the zone edge where the flux is to be 
evaluated. We solve this problem by using predictor calculations similar to ( I.8 ) to 
calculate two states at a zone edge, representing the propagation of signals coming 
from the left and the right of the zone edge. We then obtain a single value for the 
flux by solving a Riemann problem given the two states, with the jump assuaed i;; 
be parallel to the zone edge. 

The algorithm can be broken up into the following four steps: 

(1) the calculation of monotonized central difference approximations to 

A-‘6’ c?U A’C! Fir 
---z- 
d.Y d*?c (idx,;,jq 

--;2- 
A 1,’ Q’ (,or..,l,, 

(2) the construction of time-centered left and right states at the zone 
edges : U;=,“;; j,r. U:f::;&R at ((i+ 4) d.u, j A!), and I;:[.T:,f.,.L, L:y:i $_ at 
(i Ax, (j+ $) Ay); 

(3) the solution of the Riemann problem at the zone edges for the projected 
equations along the normal to that zone edge, given :he left and right states com- 
puted in (2), to obtain U:.‘z,‘.;&, CT:::,&; 

(4) the conservative differencing of the fluxes Ff, ,,:, , = F’[ Unfit&): 
F iI’., + 1 12 = F:‘( u; ;:,& ) to obtain Uy: ’ : 

We will describe the details of only the calculation of Ff+ I .?, ?; the other fluxes 
are calcuiated along the same lines, interchanging the roles of i and j. .Y and I.‘. 

The calculation of slopes follows the pattern seen in the scalar case: we use ce~- 
tral difference to approximate the spatial derivatives of L’ and constrain t&em using 
a l-dimensional monotonicity algorithm. In imposing monotonicity constraints, 
there are two strategies which have been used successfully in one dimension. The 
first is to perform a nonlinear change of variables such that the new dependent 
variables are the Riemann invariants, i.e., a set of variables (ill. ..~_ 11~“)’ such that 
I’ -8, [)I” = a,,,., and interpolate those variables componentwise using monotonized 
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interpolation such as the one given for the scalar case in the previous section. This 
procedure can be done only for special systems, since such a set of Riemann 
invariants does not, in general, exist when M> 2. A variation on this procedure is 
done for Euler’s equations for compressible flow, where the primitive variables are 
interpolated; this is discussed in Section 4. The second approach, due to 
Harten [14], is to expand the central difference approximation to the spatial 
derivatives in terms of the right eigenvectors of the coeffkient matrix of the 
linearized equation and constrain the amplitudes in that expansion. Since the latter 
procedure is well defined for general systems of conservation laws, we will describe 
it here. 

To calculate (d”U),, we define the expansions, 

where I x “: rx’ “, A”,“ are the eigenvectors and eigenvalues of the equations projected 
in the x coordinate direction. Then (d”U),,, is given by 

(2.6) 

CC” = min(I@;\, \K;J, la”,\) x sgn(a>) if aLa’,>0 

=o otherwise. 

Next, we define the left and right states at the zone edges U?:,‘.‘:,,, ~‘~~~/~~j,R. 
We extrapolate from the zone centers on either side of the zone edge at 
((i+ f) Ax, j Ay), using a formula similar to t.l.7): 

Ax AtA” c3U At c?F’ 
= U;tk,j -I +-T-- x---. 

> 2 I 2 dy 
(2.7) 

Here, and in what follows, we use expressions such as (2.7) involving the symbols 
. (.S, _+, k) to mean a pair of expressions. one with (S, f , k) replaced by (L, +, 0), 

the other with (S, &, k) replaced by (R, -, 1). In calculating CJ~~:~~~i,s, we 
approximate aU/sx by the monotonized central differences A”U/Ax and the dFy/$ 
term by a difference of Godunov fluxes, the extension to nonlinear systems in one 
dimension of upwind differencing for linear scalar equations. 



Ht is convenien: to view the calculation of U;~~,.ii.L~ C~:‘,:~~j, R as consisting of 
two steps, the Erst involving the monotonized central difference approximations io 
S d7i’3.ic, the second involving the transverse derivatives : 

In order to calculate CT,+, ?, ,.S for linear problems, it would suffice simply 20 
replace i?U/ax by (d”U),,/dx. However, we make two changes in (2.8) which. for 
constant coefftcient problems, are redundant operations leading to identica! va1uzs 
for c:T’1’>: ,’ but which have been seen to lead to a somewhat more robust 
algorithm for strongly nonlinear problems. This firs: is to discard in the ?L[i?.\- term 
the components corresponding to characteristics which do not propagate tonards 
the zone edge. The second is to introduce arbitrary reference states oia, 0,. taking 
advantage of the fact that the characteristic projection operators appearing in borh 
the construction of the left and right states and in the SOIL&XI of the Riemann 
probiem act on increments of CT. The resulting algorithm is given as follows: 

The reference states 8,, 0, are chosen so as to reduce to as great an extent as 
possibie the size of the sum of the terms multiplied by the characteristic projection 
operators P,. One possibility is to take 

The additional cost of applying the characteristic projection operators is small, 
ecause of the monotonicity algorithm, we already know the expansion of &L’ in 

terms of the right eigenvectors. Applying the characteristic pro_iection operators to 
(d”U) is accomplished by setting to zero the coefficients of the eigenvector expzn- 
sion of (A’U) which have associated propagation speeds with the wrong sign. 
Finaiiy. the cakulation of the terms involving A‘ is easiljr accomplished using the 
fact that the projection operators are sums of eigenprojections of A”, impiying that 
Ps.4~~d~u=~+I*L>o Pvc(“F’. Using this fact, and with the above choice of ?;.. 
O,, we obtain Yhe following explicit expression for i2.10 j : 
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Oi+ l,‘Z,.i, R = OR + $ 
- _ ,, : ;..I. I’ 

l+l.,co 

where the c~;‘,?‘s are the expansion coefficients of (d”U),, given by (2.6). This proce- 
dure is essentially that given in [7] for computing the left and right states for the 
l-dimensional algorithm, applied to the case of piecewise linear interpolation. 

To complete the calculation of U;:l,Lzj,S we approximate ( 8F”/ir~))/, ij,. jdJ,J by 
some appropriate upwind flux difference. The simplest choice is to use Godunov’s 
first-order method to evaluate ?P/i$. If we define UzTj+ *,,? to be the solution to the 
Riemann problem for the projected equations along the y-direction, with left and 
right states 

then 

U” + 1!2 ~f1;2.j,S= oi+l.2.j,SA& tF'( 'T+k, j+ I;2 )-F?'(UT+',,.j-I./2)) (2.14) 
,’ 

is a sufficiently accurate approximation to (2.9) to yield an algorithm that is 
second-order accurate. For problems involving moderately strong nonlinear discon- 
tinuities which are oblique to the mesh directions, it is necessary to use a slightly 
more complicated algorithm to evaluate the effect of the transverse derivative term 
(dFl‘j$y)(df/2) on the left and right states. This term estimates the change in the 
solution due to the J--gradients. In the case of an oblique discontinuity, if the 
estimate is suff%ziently different from the actual change calculated in the conserva- 
tion step, the solution will overshoot, or the discontinuity will spread, depending on 
the relative signs of the gradient and the error. To alleviate this problem, we use an 
estimate for i?F’/dy which is closer to what we will actually use in the conservation 
step, by taking Uzj+ ,,,2 to be the solution to the Riemann problem for the 
equations projected along the y-direction with left and right states 

('@+,;2.L, UPj+1,2.R)=(~r,j+1.2,L, oii,j+1~2,R)? (2.15) 

where oi,j+ m,Lr oi,j+1i2,R is cotnputed using the analogue of (2.10) for the zone 
edge at (i Ax, (j + t) Al?). 

Given the left and right states defined as above, we solve the Riemann problem 
for the l-dimensional equation projected along the .X direction to obtain U~~$j. 
In the case of constant coefficient equations, it is easy to check that CT:::,2 i satisfies 
the following linear equations, independent of the choice of a,, ni,: 
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where 

This is a finite difference approximation to the characteristic form of Eqs. i2.4) on 
the M characteristic surfaces intersecting the line {(x, ~1): x = (ii- $ As) at trme 
fZ f ! 2, The proof is a routine calculation using the characteristic projec5oG 
operators; the key fact that is required is that the solution to the Riemann problem 
for (2.2) with left and right states I$‘,, Li’-, is given by 

where P,, P, are the projection operators defined in (2.10 j. In the case where the 
equations arc nonlinear, but the solutions are smooth c’yz:.:, satisfies tQ.16’) 
modufo terms which are second order in the mesh spacingi provided that 
0 -rr-y 

S Vt!tk,j is of the order of the mesh spacing, where the eigenvectors and eigen- 
values are evaluated at U;‘~~~~,. This fact describes one sense in which the 
algorithm described here is upstream-centered for smooth solutions: the valw ol 
the predictor CT:,” ,!;z, is given as a solution to 34 linear equations which are 5ni:e 
difference approximations to the characteristic equations, 

Finally, we need to specify a bound on the time step for stability. We expect that 
the CFL condition should be given by 

by analogy with the stability condition (1.5) for the advection equation. Tn the ‘case 
where A” and A F commute, the above stabiiity condition holds m the sense that i; 
held for the scalar equation, i.e., that the fully limited scheme. and the scheme 
without limiting. both have (2.17) as necessary and sufficient conditions for Fouraer 
stability. This follows easily from the analogous result for scalar equations, plus the 
fact that the system can be diagonalized. We have not proven (2.17) for any 
problem for which A” and -4”‘ do not commute. However, we have used the above 
condition as a time step control for our gas dynamics calculations and have seen 
no evidence of instability. 

3. QUADRILATERAL GRIDS 

The above algorithm can be extended to the case of arbitrary quadrilateral grids. 
For the purposes of deriving the algorithm we will assume that our grid comes from 
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a smooth coordinate mapping, although the final difference algorithm will be 
expressed only in terms of differences between coordinates of the corners of the 
quadrilateral mesh. 

We now assume that our computational domain is divided into quadrilaterals 
LI,~ with corners located at (-‘ci+ ,,2, i+ 1,2, yi+ I,,Z,.i+ l,.z). Furthermore, we assume 
there is a smooth map (5, r]) c* (x, y) between some coordinate space and physical 
space, with a rectangular mesh in (5, tl) space with corners located at (li_ rT2, 

qj+ I;?) such that (-xi+ r.l..,+ I.‘*, .Yi+1.2.j+ r/2) = (-x(ri+ I!23 vj+ l.fZJ. Y(Ci+ 1’2, ‘lj+ 1:2)). 

We can transform the system (2.1) to the (& I?) coordinate system: 

d(JU) i?F< irFq 
dt+S;;+-=0 

drl 
(3.1) 

J= Det(V,,,,,ix, J’)) 

F’ = ,,‘I F, JV=n’.F 

“v=($,_?T); &(_$,$). 

Without loss of generality we assume here that J>O. We define finite difference 
approximations to the derivatives of the grid mapping function: 

(Arx)~.j=~((A’x)~,~+~‘2+(A5X)~,~_~,~) 

(A’?X),,= $((A’lx)j+ 1.2.j+ (dw_,,2.j) 

~j.j=~((Xi+I;2,j~-li.2-Xi~ 1,2,j+~,2~(J~i+1~2,j~~l;l~J'r~-1;2,j--l.2~ 

+ (Xi, 1,2.j+ ,,‘2 - .Xj_~ I,&- ,,‘2 )( J’i- I.z,~+ I,Z - Ji+ r,2,j- 1.2)). 

(3.2) 

Using these finite differences, we can make the connection between the mapping 
derivatives appearing in the transformed equations (3.1) and the geometry of the 
finite difference grid in physical space (Fig. 4) : oii z J(&, vi) LI~~LI~ is the area of 

the (i, j)th zone, and n’ 65, z -(d:x)&+ 1;2, nIr Atliz (A”xj,i; ,;2,j are normal to the 
zone edges, where we use the notation (n,,, 12’~)~ = (ICY, --ICY). 

As in the previous section, we will assume that, at time step 12, we know lJFj, the 
average of U over A,i. The procedure for calculating LJ;T’ follows the same basic 
outline as that for the rectangular grid case. We construct time-centered left and 
right states at the zone edges, solve the Riemann problem, and difference the fluxes 
conservatively, taking care that, at each step, the effect of the quadrilateral mesh is 
accounted for in a suitable fashion. 
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Constant 
7 Lines 

t: Lines 

FG. J. Georr,etric interpretation of the difference approximations to the derivettivz =f the s’id 
mapping. 

Our conservative difference step will be of the “f&rite volume" type: 

~~~~‘=L::,+dr1(il”x),,,~,,,.F(U:r~l:il:i-(40~~:+~~.~. 
oi,, 

(ly’v,i 

- (&)l i.i-i,~.F(C~~~‘~;?,)+(3~x)~i*1,2’F(UTf~~;~*)~. i”> Y J.3 ! 

It is ckar that this formuia is a conservative finite difference approximation to (3 1). 
This formula can also be obtained by integrating (2.1) over 4,,j x [r”, I”+ ‘3, apply- 
ing the divergence theorem, and approximating the resulting surface inregrafs using 
the rcidpoint formula From that point of view, each of the terms multiplied by 
JI,~cT~, i represents a time- and space-averaged flux through one of the edges of LP:,~. 

Our strategy for obtaining values for U;;:;l,, 
in the rectangular grid case. We extrapolate time 
states at the zone edges using (3.1). We then solve the Riemann problem usmg these 
states for Eqs. (2.1) projected in the direction of the normal to the zone edges in 
physical space. We consider, for example, the zone edge centered at (i $ I,‘& j) and 
we wish to construct U;:t;; i.L, / u~~~:~ i. R, 3. the left and right states at that znae 
edge, The starting point for this is to consider the extrapolation formulae analogous 
to (2.7) for the system (3.1): 
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where A’ = nV. A. The term (At/2J)(SnV/dt). F comes from putting SF:Ic?{ in non- 
conservation form and is equal to zero in the rectangular grid case. We break this 
procedure into two steps: 

Oi+ Ij2.j,S= A: 
au E 
Ed*i+k 

(3.6) 

We approximate aU,ia< by monotonized central differences and c?F”/dq by upwind 
differences. The term (L?nt~,/ag) . F is differenced in such a way as to exactly cancel 
the difference approximation to aF”j&~ if there are no gradients in the q direction. 

We first consider the calculation of oj+ ,;2..i,s. We approximate 

1 At 

‘2-2JAEi+k 
A’ (A”x),L+~,~. A(U;&) (3.7) 

where we have replaced J and nt, ns by the appropriate difference approximations 
from (3.2). By analogy with the rectangular grid case, we want to approximate 
(i!U/a<) Ati with (LI~U)~,~, a central difference approximation to which some form 
of monotonicity constraint has been applied. If the coordinate mapping is smooth, 
then the formula (2.5) for equally spaced zones can be used without modification, 
while retaining second-order accuracy in regions where the solution is smooth. 
However, we replace the eigenvectors in the monotonicity constraints in (2.6) by 
(I??, I$;), v = 1, . . . . M, the left and right eigenvectors corresponding to the eigenvalues 
,I#< . . . < 2:: of (dqx)$. A(Uyj). As before, we can also discard terms in (3.7) 
corresponding to signals propagating away from the zone edge and allow for an 
arbitrary choice of reference state n,, obtaining the following analogue of (2.10) for 
a general quadrilateral grid : 

Oi+ I!2J,S= 8,+ P,(qj- &) 

where 
P, 121 = C (l!ck,.j. 1~) rglk,j. 

,,: +,$.v ~~ t+i.,‘O 

We approximate (At/2J)(dFv/&y) by an appropriate upwind difference 
approximation. In general, it is of the form of the corresponding difference 
approximation in the conservative difference step (3.3): 
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Here cyj+ i ,1 is calculated by solving a Kiemann probkm for the projected equa- 
tions aiong - (A%)$+ L:7 with left and right states (GFI+ r 2,L_ L::,, I 2_R). As in the 
rectangular grid case, Ulf,, ,.l.S may be set to Cr:; li l OP O,,;+ i,2.s. Fidi~i, we 

approximate (~It,W)(i?rn~/d~) . F using the finite difference approximations i 3.2’) : 

Collecting our difference approximations. our tinai value for r;:i;; 2’ i,s is given by 

We obtain 5:;:,‘1, by solving the Riemann problem for he projected equations 
along (d’fx):; 1 2.1 &th ieft and right states t~:‘~(,l~,.,T i.:y+?::I,R. t:~~~~.,‘, satisfies 

ifference approximations to the characteristic equations (2.4) for the charac- 
ceristic surfaces through the (i + i/Z, j)th zone edge in physical space, similar to 
(2.14), 

The appropriate generalization of (2.17) as a CFL condition on the time step !s 
given by 

This is dimensionally correct since Ati, I.:-; contain factors of A%, Il’x. In the case 
of advection, and if the coordinate transformation is a linear map, one can 
demonstrate by numerical evaluation of the Fourier transform, as was done for the 
rectangular mesh case, that this is the correct CF‘L condition. In general, the time 
step bound (3.12) has the following interpretation in terms of characteristics: At 
must be less than the time it takes a wave propagating in a direction normai to a 
zone edge to reach an opposite zone edge. 

4. GAS DYNAMICS 

We give in this section a detailed description of an algorithm of the type- 
described above for the case of Euler’s equations for inviscid compressible flow in 
two space variables, in planar geometry, on a general quadrilateral grid. The system 
we wish TO solve is of the form (2.1), with M = 4, and 



188 PHILLIP COLELLA 

where p is the density, (u, ~1) = u the s and 4’ components of velocity, and E the total 
energy per unit mass. The pressure is derived from these quantities via an equation 
of state, p = p(p, e), where e is the internal energy per unit mass, given by 
e = E - f(~’ + a’). In this section, we will describe an algorithm suitable for use with 
a polytropic equation of state, i.e., for p given by p(p, e) =&II- l), and the 
adiabatic speed of sound c given by c2 = yp/p. The case of a general convex equa- 
tion of state is a straightforward extension of ideas in [6]. 

The projected equations for the system (4.1), are essentially those of gas 
dynamics in one dimension. If we project the equations in the II direction for n a 
unit vector, we can make a change of variables to obtain the following system 
equivalent to (2.2) : 

aw WW)=o 
at+ a)[ (4.2) 

Here uN = u . n, uT = u n’ with the other variables defined as before. Since n is a 
unit vector, u2 + z.~* = ( uN)l + (UT j2 so the formula for the internal energy r can use 
either quantity. From these equations, it is clear that the eigenvectors and eigen- 
values of the linearized system, as well as the solution to the Riemann problem, are 
given by those for the l-dimensional gas dynamucs equations, with U’ being treated 
as a passively advected quantity. Hence, we can use the techniques of [4: 71 for 
calculating solutions to the Riemann problem and for manipulating characteristic 
variables. 

Although the algorithm described here follows the same basic outline as those 
given in the previous two sections, there are some differences, mainly with the 
calculation of tij+ l,z,.i,s, For the purpose of calculating tii, I;2,,j.s, we make a non- 
linear change of variables, performing the difference calculation of (3.5) in terms of 
the primitive variables p, U, v, p, as was done in [7] for gas dynamics in one space 
variable. We then transform back to the conserved variables to calculate I!J~~~;~~ s. 
This procedure enables us to perform our central difference calculation com- 
ponentwise on the primitive variables, using formulas similar to (1.9), rather than 
on the amplitudes of an expansion of d’U in terms of the right eigenvectors. Also, 
since we are working in terms of the primitive variables, we can use the more 
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elaborate central difference algorithm given in [6]> which gives rise to a steeper 
representation of dicontinuities than (1.9). 

In order to justify the use of the more elaborate algorithm for computing 2C1,i3< 
and, more generally, to understand the errors introduced by using difference 
approximations to 8Lr/~<, such as (2.5). it is useful to make a local change a: 
variables (<, q) ++ (n, S) 

The coordinate (a, 6) measure arc length along the grid lines (q = constJ, 
‘, 5 = const 1, respectively. It is easy to check that, for (<, q) sufficiently close to 
(<;. r,rj) the Jacobian of the above map is nonsingular, since the cross derivatives 
?a/c?q?, ?h,‘o’< = U( (( - ri), (g - 11~)). Using the chain rule, we compute c?GI/S< to 5:: 

Thus, the central difference approximation to SU:Sg used in (3.8) can be viewed as 
using a central difference approximation for irC:iSn and dropping the term pro~or- 
tional to St/Z<, since it is of one order smaller in the mesh spacing. In Ierms of the 
mesh in physical space, this corresponds to the assumption that the arc length 
along each of the coordinate directions is a smoothly varying function of the other 
coordinate. This is a condition satisfied in a wide variety of applications, even when 
the grid mapping as a whole is not smooth, such as in the case of highly stretched 
grids used in aerodynamics calculations. In the latter situation, one can retam the 
formalism developed here but use an approximation to the derivatives appropriate 
for a strongly varying mesh in the u- or b- direction. 

In terms of the coordinate system (4.3), we can express C:‘_‘i,& in the form 

where 
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We calculate OL, I;z,j,S by transforming to the variables C’= (p, u, ~1, p)’ before 
applying (4.5) : 

Here Ti,j=V,,Ul [ci and P, is defined by Psw=~,:+;.Y;Y~,,~o (I?~K.J”) ‘YIk.j: *here 
IT;, r:J, AT;, 1, = 1, . . . . 4 are the eigenvectors and eigenvalues of T,i’ .,4fj. Ti.j: 

1 
llbC 

-I 

f, 1 = 

! 
P 

llbC 
-I’ 

P 

c* 

r a.2 _ - 2 b 
ry 

P 

la,4= ( o,fg$& . > 



Here d = (oh,, II:) and the subscripts i, j are suppressed. The ?ime step cont.roi 
i 3.12) in terms of the above eigenvalues, is given by 

The approximation to (?P:;&z)l,, ~!a,~ we use is obtained by using a foormrrla tik 
( 1.9) far each component of J’. For example, we define. ?o~ q = py p= II, I’. 

(A&,q)i.i=2 min(jq:‘+,,j-q:fj/, l&-&-~.jl! 

if (q:‘+,,j-(I:Ij)(4:Ti-4;-l.i)>o. 

=O otherwise, 

(d;‘~ii~,=min(~lq?+,.i-q:+,,~ 1, (d~,q)j.,)xsgniq:‘+,,i-a:I+;.,)! 

and set {dL’qji.j= jd-Tq)j,j to obtain the algorithm ana’8ogous 10 (1.9). In the caic~~la- 
Cons presented in Section 5. we use the following algorithm. taken from [SJ. which 
Yields a steemzr representation of discontinuities : 

Given the xvalues for d”l’, we can give explicit formulas fz kTri+ , ?, j,s: 
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The formulas for ?. ,,,+,,Z,S are identical to those given above, with the interchange 
of i and j, na and nb. 

The calculation of Uy:lf,;& given oi+1,2,j,s is given by (4.5): with UIfi+,:.2 the 
solution to the Riemann problem for the equations projected in the nzj+ I.:2 direc- 
tion, with left and right states given by UTj+l.:z,s= tii,j,1,2,s or Uzj+ I,2r3= U:fj+k. 
In the calculations shown below, we use the latter choice. 

The final conservative difference step is given by (3.3). We define 

where n~:(z:$ j = Abi+ l,,z._ip~~$~ ,(n!+ 1:z.j . uYcl’:z jj, rn~i’,‘;& = Aai.j+ I~~P~~~‘$ 

(n~j+l;2 “;~~~2) 
are the mass fluxes through the zone edges at (i+ f, jj and 

(i, j+ 4). Then (3.3) is given by 

At 
Ult’=U’f.$--(F<_ : 

1. I 1.' 
.-F< 

~i,j 1 l:z,J I+1.2.i+FZj-_,3-F:jtl~Z). 

Dissipation Meckanisrns 

In [7], it was noticed that, in one space dimension, and near strongly nonlinear 
shocks, the dissipation implicit in monotonicity constraints such as (3.6) and (4.8), 
was insufficient to guarantee the correct jump in the Riemann invariants trans- 
ported along the characteristic families which cross the shock. For that reason, it 
was suggested that additional dissipation be added to the algorithm near such 
discontinuities in the form of flattening of the interpolation functions and by adding 
a small viscous dissipation term to the fluxes. Since both these forms of dissipation 
were required for l-dimensional problems, it is expected that similar dissipation 
would be required for the present algorithm, since, for l-dimensional problems, it 
is similar to the algorithm in [7]. The second-order artificial viscosity used in [7] 
can be applied without modification to the present algorithms simply by adding the 
dissipative flux to each of the four fluxes, prior to the conservative differencing step. 
The form these dissipative fluxes take in the case of a general quadrilateral grid is 
also standard; see, e.g., [19]. The simplest flattening algorithm in [7] can be used, 
with one important modification: in each zone, the slopes corresponding to the 
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derivatives in each of the grid directions should be flattened by the same amount. 
We define flattening zU, $‘, 

otherwise 

x;i=min(ZP~m ‘,,. j, fTii, 

where 

and 

~~,,=sign(p,+~.,-p~-,.,) 

We define xpi similarly. with the roles of i andj reversed. Then the slopes d”q. d-jq 
obtained fro& (4.8) are reset to 

d”9, j? dh9i,y -‘%iid”qa,Xi.idhqi,i. v-4,10! 

where 

hn the runs discussed in the next section, the parameters in the above aigoriihm 
were set to be 6 = 0.33, z. = 0.75, z1 = 0.85. In addition, we used the Z-dimensional 
Lapidus viscous flux discussed in [7] with a coefficient of 0.1. These were the choice 
of the parameters used in the corresponding algorithms for operator split calcula- 
tions described in [7] and have been found to give adequate results when -used with 
the present algorithm over a wide range of problems. 

Boundtwy Corzdirions 

It is straightforward to impose various continuation-type boundary conditions 
(inflow, outflow, periodic, etc.) in regions where the grid has a natural extension 
beyond the computational domain. Since the numerical domain of dependence of a 
grid point is contained in the 9 x 9 block of grid points containing the point at the 
center, then one can extend the original computational mesh by four grid points En 
each direction and set the values of the extended part of the grid at rhe beginning 
of each time step using the boundary conditions, thus supplying sufficient data tc 
calculate the values on the original grid. 
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The most common situation where one cannot extend the grid is in the case of 
an impermeable surface, particularly on a body-fitted grid. Let us assume, for exam- 
ple, that the curve {t(x)= Sj,~.,~r} IS a reflecting surface, with the fluid contained 
in the region (f(x)> ti,- 1.‘2}. The algorithm described above can be applied 
without modification, if we specify values for the slopes d~~qiom.,,2,j, dbqjo-l,,,i and 
for the fluxes F( Ui-- 1,.2. j), F( t’i?‘, 1 i,,). The slopes are given by 

dqj~,j=di4io.j=o, q=p,p, ne, 2.i.u 

nff-I.'2.j' ~~ui~,j=min(lui~,j.n~-,.~,,iI, 21fuio+l.j- %,i) . n,b,-. I,‘2, jl ) w(uio.j~ ni- ~2.~) 

if (~i,,i~n~~~,~2,,~~ui,+,,j-ui,,j)~n~-~,2,i~0 

=o otherwise. (4.11) 

Given the slope information, it is possible to calculate fijO-,,.z,j.R, U;‘:j’,,j R. To 
obtain the states Uz _ 1;2 i, U;;‘y:5,j, we solve Riemann problems projected ‘in the 

‘i- 1,'Z.j direction, with left and right state given by 

1 r-l+ IiT ,I + 1;2 
qio-li2.j,Lt 9i,~-1,.2,,i,L=qi0-lI,2,j,R, 4$-1;2.j,R? 4=p,p,n~,,2,,.u 

nkpl,2 j.~ia-~,'2,j,~,nfb-~.~j'u~t-~'2,j~= -nb,- I.2,j.'io-1'2J.R> -nk-, 2 j.R' 

(4.12) 
3. I 1 

With this choice of left and right states, it is clear that uiO- l:z,j= 0% so that the 
advective terms in the fluxes at (i, - $, j) vanish, leaving only the pressure terms in 
the X- and I’-momentum equations. Whatever approximate solution to the Riemann 
problem is used should guarantee that the advective terms vanish in the flux 
calculation at the wall. 

5. NUMERICAL RESULTS 

The gas dynamics algorithm described here has been used in a variety of applica- 
tions in two dimensions, including flow in cascades and channels with body-fitted 
meshes [9], in adaptive mesh refinement calculations [Z], and in a conservative 
front-tracking algorithm [3]. In addition, various forms of the algorithm for scalar 
equations have been used to calculate flow in porous media [15]. 

We will present here two gas dynamics calculations, both done on rectangular 
grids. The first is the calculation of a steady state regular shock reflection described 
in [23], which has been used extensively as a test problem for numerical methods 
used in aerodynamic calculations [25]. The second test problem is the double 
Mach reflection of a shock off an oblique surface, used in [22] as a test problem 
for comparing the performance of various difference methods on problems 
involving strong shocks. Since our purpose is to demonstrate that the current 
method has the same resolution as the corresponding operator split algorithm, we 
present also a calculation of the latter problem performed by using in an operator 
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FIG. 5. Steady state regular refiection problem 

split formulation the I-dimensional algorithm obtained by restricting the aigoriktm 
described in Section 4 to one dimension 

In the first test problem, the computational domain is a rectangle of length 4 and 
height I (Fig. 5). This domain is divided into a 40 x 20 rectangular grid, wiii 
di- = A, dy = &. The boundary conditions are that of a reflecting surface aiong the 
bottom boundary, supersonic outflow along the right boundary, and Dirichlet 
conditions on the other two sides, given by 

(Pi u, I’, L&yLr!= (l., 2.9,0., l/1,4) 

(p. u, 11, JJ)~ ,.yl. rf = (1.69997, 2.61934, .50632, !.52819). 

InitiaPiy, we set the solution in the entire domain to be that at the left boundar:,i: 
we then iterate for 500 time steps using a CFL condition of 0.9, at which time PIP 
solution reaches a steady state. 

In Fig. 6, we show a contour plot of the pressure. The contours are equally 

FIG. 6. Numerical solution to regular reflection problem: (a) with flattening; (b I withcct fla::zn;rtg. 
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FIG. 7. Comparison of pressure profiles for regular reflection problem along the line y=O.525 

(j= 11 J: s-with flattening, *-without flattening. 

spaced, with contour levels of 0.1, beginning at 0. The shocks have a nearly 
monotone transition, and are fairly narrow, with some slight spreading on the high 
pressure side of each shock. This spreading is due to the flattening algorithm (4.10). 
We see this in Fig. 7, where we plot profiles of the solution at J = 0.525, computed 
with and without flattening. The width of the shocks is about 2-2; zones in the 
normal direction, where this figure is obtained by counting the number of points in 
the transition in Fig. 7, and multiplying it by sinjtan-r((dx//d~~) Itan(ajl)j, where 
ry is the angle between the direction tangent to the shock and the x direction. The 
shock transition with flattening is slightly broader; however, the transition without 
flattening has some low-amplitude oscillations, which are not present in the 
solution obtained with flattening. Even though the shocks are supersonic on both 

a 

b 

FIG. 8. Ramp reflection problem: (a) initial configuration; (b) double Mach reflection at later times: 

solid lines are shocks: dotted lines are slip surfaces. 
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FIG. 9. Numerical solution of ramp problem using the method described in Section %. The mest is 
a rectangular mesh of 430 x 100 zones, with the reflecting wall beginning 20 mesh lengths from the !owe: 
left corner. 4.x = -ly = &, and the time shown is r = 0.2; thus this calculation corresponds to ihc fines: 
grid results in [22> 

sides, there is no difficulty with uncontrolled diffusion of the discontinuities. This is 
in contrast to the results obtained with first-order upwind methods, where steady 
shocks remain quite sharp if the transition is supersonici!subsonic, but which spread 
over many zones if the transition is supersonic/supersonic. Indeed, t’ne main 
difficulty for the present method is to ensure that the shocks are broad enough SC 

that sufficient dissipation occurs across the shock, as was the case with the operator 
split second-order methods. 

The second test problem is unsteady shock reflection problem. A planar shock is 
incident on an oblique surface, with the surface at a 30’ angle to the direction of 
propagation of the shock (Fig. 8). The fluid in front of the shock has zero veiocity, 
and the shock Mach number is equal to 10. The sohution to this problem is self- 
similar, with U a function of (x, I; t) only in the combination (-Y,‘!, ~,jri. In Fig. 9, 
we show the results of calculation of this test problem performed with the present 
unsplit second-order method; in Fig. 10. the corresponding results obtained with 
the operator split method. The results of the two calculations are essentially ideE& 
cai, supporting the assertion that the unsplit method has the same resolution as the 
corresponding operator split method. However, a considerable degree of car: was 
required in the unsplit scheme for this to be the case. The choice of (2.15), rather 

FG. 10. Numericai solution of ramp reflection problem. using operator split method. with numericai 
parameters the same as for Fig. 9. 
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than (2.13), in calculating the transverse derivative in the predictor step is essential; 
otherwise, one obtains considerably lower resolution in the jet along the wall in the 
double Mach region. The accuracy in the double Mach region is also sensitive to 
the reflecting boundary conditions. The former difliculty has no analogue in the 
operator split method; as for the latter problem, the operator split method gives the 
same results which much simpler boundary conditions. Finally, the multidimen- 
sional flattening algorithm given by (4.10) was required to eliminate low-amplitude 
noise behind the shocks, whereas the operator split algorithms required only the 
l-dimensional flattening algorithm in [7] to be applied in each sweep. 

6. DISCUSSION AND CONCLUSIONS 

In this paper, we have derived explicit second-order Godunov-type methods in 

two space variables by using the wave propagation properties for multidimensional 
hyperbolic equations and by limiting some of the second-order terms to suppress 
oscillations. The calculations in Section 5 indicate that we have been successful in 
the goal stated in the Introduction of producing an algorithm with comparable 
performance to the operator split second-order Godunov methods, at a comparable 
cost. In retrospect, this is not surprising, since the multidimensional algorithm 
consists of combinations of the l-dimensional operators which appear in the 
operator split schemes. In particular, the same Riemann problems appear in the 
present method as in the operator split methods, since in the former case averaging 
the solution to the characteristic form of the equations over a zone edge provides, 
via (2.4). a natural choice of a direction in which to project the multidimensional 
equations for solving the Riemann problem. However, there are differences between 
the present algorithms and the operator split approach. The algorithms discussed 
here are somewhat more expensive, requiring twice as many solutions to the 
Riemann problem as the corresponding operator split algorithm. Since the cost of 
solving the Riemann problem for a polytropic equations of state constitutes half the 
cost of the calculation in one dimension [6], this leads to an algorithm which takes 
50% more time than the operator split algorithm. In the regular reflection problem, 
the vectorized implementation on the Cray 1 advanced about 24,000 zones by one 
time step in each cpu second, consistent with this estimate and the timing figures 
for the corresponding l-dimensional algorithm given in [6]. Also, the multi- 
dimensional algorithms appear to be more sensitive to various details of the 
implementation, requiring a greater degree of care, such as for the reflecting 
boundary conditions (4.1 l)-(4.12), and for the flattening algorithm (4.10). 

There are a number of straightforward applications and extensions of the 
methods described here. It is possible to introduce quadratic interpolants, as in [7], 
to evaluate c7 in the predictor step in order to improve the resolution of linear 
discontinuities by means of contact detection and steepening. Conservation laws for 
which the fluxes have an explicit spatial dependence, such as for incompressible 
multiphase flow in porous media, can be easily treated using similar techniques to 



the ones used for the general quadrilateral meshes. The treatment of a general eqas- 
tion of state via the techniques in [6] is accomplished by introducing an additioml 
transport equation for y = p/pe + 1 for use in the predictor step for the transverse 
derivatives. Thus mtroduces some additional complication into the method, which 
is mGre than offset by the fact one need oniy evaluate the equation of slate once ner 
zone per time step. 

There are some problems for which the formalism given here is attractive, but f.or 
which the extensions are not entirely straightforward. One of these is the extension 
of this method for calculation of problems in Lagrangian coordinates In ttvo dimen- 
%ons. The difficultv here is that the motion of the grid must be obtained from :rhr d 
soiution itself; uniike in one dimension, neither the solution nor the fluxes arc- 
defined at the corners of the mesh, where it is most natural to specify the motion 
of the grid. Consequently, some form of averaging of the velocities mu.st be intro- 
duced in order to move the grid, but one which does not degrade the resolution of 
the method [IT]. Finally, there is the question of the extension of these ideas ‘IC 
three dimensinns. If we just take as our advection aigorithm the 3-dimensionak 
anaiogue of (1.2). we arrive at an algorithm fGr systems which satisfies the proper- 
ties ( t j-(3 ) in the introduction, but requires 12 solutions to the Riemarm prob’iem 
per zone per time step; this is in contrast to the 3 solutions required by an operaror 
split method. The large number of solutions to the Riemann prob!em comes from 
rh.e fact that for each coordinate direction in three dimensions, the analogtie of -he 
predictor step fGr the transverse derivatives (2.9 ) requires a calcuiation comparable 
to the full 2-dimensional calculation described in this paper. However, if we are 
willing tG relax the third requirement somewhat, we obtain an algorithm which 
requires only 6 solutions to the Riemann problem by using the extension Gf donor- 
ceh differe~c~ng TV systems to evaluate the transverse derivatives in the pre&ctG; 
step: equivafentfy. we would be ignoring the contributions due tG trampor: frorr: 
zones offSet by one mesh length in all three directions, which correspond :G third- 
order terms in the truncation error. Tn both cases. we would obtain a:gGrithms 
which, for 2-dimensional problems aligned with one Gf the mesh direction;: gi~:.e 
identical results to the algorithms described in this paper. The question as to Rabat 
the appropriate formulation is for problems in three dimensions is undGubted;y 
problem dependent. and probably can be resolved only by numerical expcriment~. 
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